3.修改配置
4.微调开始
5.微调后参数转换/合并
export MKL_SERVICE_FORCE_INTEL=1
export CONFIG_NAME_OR_PATH=
/root/ft-homework/work_dirs/internlm_chat_7b_qlora_oasst1_e3_copy/internlm_chat_7b_qlora_oasst1_e3_copy.py
# 模型训练后得到的pth格式参数存放的位置
export PTH=/root/ft-homework/work_dirs/internlm_chat_7b_qlora_oasst1_e3_copy/epoch_1.pth
# pth文件转换为Hugging Face格式后参数存放的位置
export SAVE_PATH=/root/ft-homework/work_dirs/hf
xtuner convert pth_to_hf $CONFIG_NAME_OR_PATH $PTH $SAVE_PATH
Merge模型参数
export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER='GNU'# 原始模型参数存放的位置
export NAME_OR_PATH_TO_LLM=/root/ft-homework/internlm-chat-7b
# Hugging Face格式参数存放的位置
export NAME_OR_PATH_TO_ADAPTER=/root/ft-homework/work_dirs/hf
# 最终Merge后的参数存放的位置
mkdir /root/ft-homework/work_dirs/hf_merge
export SAVE_PATH=/root/ft-homework/work_dirs/hf_merge
# 执行参数Merge
xtuner convert merge \\
$NAME_OR_PATH_TO_LLM \\
$NAME_OR_PATH_TO_ADAPTER \\
$SAVE_PATH \\
--max-shard-size 2GB
安装网页Demo所需依赖
pip install streamlit==1.24.0